Conservation of energy
- non-viscous, incompressible fluid in steady flow
A statement of the
conservation of energy in a form useful for solving problems involving fluids.
For a non-viscous, incompressible fluid in steady flow, the sum of pressure,
potential and kinetic energies per unit volume is constant at any point.
A special form of the
Euler’s equation derived along a fluid flow streamline is often called the
Bernoulli Equation:
For steady state
incompressible flow the Euler equation becomes (1). If we integrate (1) along
the streamline it becomes (2). (2) can further be modified to (3) by dividing
by gravity
Head of Flow
Equation (3) is often
referred to the head because all elements has the unit of length.
Dynamic Pressure
(2) and (3) are two
forms of the Bernoulli Equation for steady state incompressible flow. If we
assume that the gravitational body force is negligible, (3) can be written as
(4). Both elements in the equation have the unit of pressure and it's common to
refer the flow velocity component as the dynamic pressure of the fluid flow
(5).
Since energy is
conserved along the streamline, (4) can be expressed as (6). Using the equation
we see that increasing the velocity of the flow will reduce the pressure,
decreasing the velocity will increase the pressure.
This phenomena can be
observed in a venturi meter where the pressure is reduced in the constriction
area and regained after. It can also be observed in a pitot tube where the
stagnation pressure is measured. The stagnation pressure is where the velocity component
is zero.
Example - Bernoulli Equation and Flow from a Tank
through a small Orifice
Liquid flows from a
tank through a orifice close to the bottom. The Bernoulli equation can be
adapted to a streamline from the surface (1) to the orifice (2) as (e1) :
Since (1) and (2)'s
heights from a common reference is related as (e2), and the equation of
continuity can be expressed as (e3), it's possible to transform (e1) to (e4).
Vented tank
A special case of
interest for equation (e4) is when the orifice area is much lesser than the
surface area and when the pressure inside and outside the tank is the same -
when the tank has an open surface or "vented" to the atmosphere. At
this situation the (e4) can be transformed to (e5).
"The velocity out
from the tank is equal to speed of a freely body falling the distance h."
- also known as Torricelli's Theorem.
Example - outlet velocity from a vented tank
The outlet velocity of
a tank with height 10 m can be calculated as
V2 = (2 (9.81
m/s2) (10 m))1/2
= 14 (m/s)
Pressurized Tank
If the tanks is
pressurized so that product of gravity and height (g h) is much lesser than the
pressure difference divided by the density, (e4) can be transformed to (e6).
The velocity out from
the tank depends mostly on the pressure difference.
Example - outlet velocity from a pressurized tank
The outlet velocity of
a pressurized tank where
p1 = 0.2 (MN/m2)
p2 = 0.1 (MN/m2)
A2 / A1 = 0.01
h = 10 (m)
can be calculated as
V2 = ((2 / (1 - (0.01)2)
((0.2 106 N/m2) - (0.1 106 N/m2)) / (1000 kg/m3)
+ (9.81 m/s2) (10 m)))1/2
=
19.9 (m/s)
Coefficient of Discharge - Friction Coefficient
Due to friction the real velocity will be
somewhat lower than this theoretic examples. If we introduce a friction coefficient c (coefficient of discharge), (e5) can
be expressed as (e5b)
The coefficient of
discharge can be determined experimentally. For a sharp edged opening it may
bee as low as 0.6. For smooth
orifices it may bee between 0.95 and
1
0 Response to "Bernoulli Equation"
Post a Comment